Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
primes -> sieve1(from1(s1(s1(0))))
from1(X) -> cons2(X, from1(s1(X)))
head1(cons2(X, Y)) -> X
tail1(cons2(X, Y)) -> Y
if3(true, X, Y) -> X
if3(false, X, Y) -> Y
filter2(s1(s1(X)), cons2(Y, Z)) -> if3(divides2(s1(s1(X)), Y), filter2(s1(s1(X)), Z), cons2(Y, filter2(X, sieve1(Y))))
sieve1(cons2(X, Y)) -> cons2(X, filter2(X, sieve1(Y)))
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
primes -> sieve1(from1(s1(s1(0))))
from1(X) -> cons2(X, from1(s1(X)))
head1(cons2(X, Y)) -> X
tail1(cons2(X, Y)) -> Y
if3(true, X, Y) -> X
if3(false, X, Y) -> Y
filter2(s1(s1(X)), cons2(Y, Z)) -> if3(divides2(s1(s1(X)), Y), filter2(s1(s1(X)), Z), cons2(Y, filter2(X, sieve1(Y))))
sieve1(cons2(X, Y)) -> cons2(X, filter2(X, sieve1(Y)))
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
primes -> sieve1(from1(s1(s1(0))))
from1(X) -> cons2(X, from1(s1(X)))
head1(cons2(X, Y)) -> X
tail1(cons2(X, Y)) -> Y
if3(true, X, Y) -> X
if3(false, X, Y) -> Y
filter2(s1(s1(X)), cons2(Y, Z)) -> if3(divides2(s1(s1(X)), Y), filter2(s1(s1(X)), Z), cons2(Y, filter2(X, sieve1(Y))))
sieve1(cons2(X, Y)) -> cons2(X, filter2(X, sieve1(Y)))
The set Q consists of the following terms:
primes
from1(x0)
head1(cons2(x0, x1))
tail1(cons2(x0, x1))
if3(true, x0, x1)
if3(false, x0, x1)
filter2(s1(s1(x0)), cons2(x1, x2))
sieve1(cons2(x0, x1))
Q DP problem:
The TRS P consists of the following rules:
FILTER2(s1(s1(X)), cons2(Y, Z)) -> SIEVE1(Y)
FILTER2(s1(s1(X)), cons2(Y, Z)) -> FILTER2(X, sieve1(Y))
FILTER2(s1(s1(X)), cons2(Y, Z)) -> FILTER2(s1(s1(X)), Z)
PRIMES -> SIEVE1(from1(s1(s1(0))))
SIEVE1(cons2(X, Y)) -> SIEVE1(Y)
PRIMES -> FROM1(s1(s1(0)))
FILTER2(s1(s1(X)), cons2(Y, Z)) -> IF3(divides2(s1(s1(X)), Y), filter2(s1(s1(X)), Z), cons2(Y, filter2(X, sieve1(Y))))
SIEVE1(cons2(X, Y)) -> FILTER2(X, sieve1(Y))
FROM1(X) -> FROM1(s1(X))
The TRS R consists of the following rules:
primes -> sieve1(from1(s1(s1(0))))
from1(X) -> cons2(X, from1(s1(X)))
head1(cons2(X, Y)) -> X
tail1(cons2(X, Y)) -> Y
if3(true, X, Y) -> X
if3(false, X, Y) -> Y
filter2(s1(s1(X)), cons2(Y, Z)) -> if3(divides2(s1(s1(X)), Y), filter2(s1(s1(X)), Z), cons2(Y, filter2(X, sieve1(Y))))
sieve1(cons2(X, Y)) -> cons2(X, filter2(X, sieve1(Y)))
The set Q consists of the following terms:
primes
from1(x0)
head1(cons2(x0, x1))
tail1(cons2(x0, x1))
if3(true, x0, x1)
if3(false, x0, x1)
filter2(s1(s1(x0)), cons2(x1, x2))
sieve1(cons2(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
FILTER2(s1(s1(X)), cons2(Y, Z)) -> SIEVE1(Y)
FILTER2(s1(s1(X)), cons2(Y, Z)) -> FILTER2(X, sieve1(Y))
FILTER2(s1(s1(X)), cons2(Y, Z)) -> FILTER2(s1(s1(X)), Z)
PRIMES -> SIEVE1(from1(s1(s1(0))))
SIEVE1(cons2(X, Y)) -> SIEVE1(Y)
PRIMES -> FROM1(s1(s1(0)))
FILTER2(s1(s1(X)), cons2(Y, Z)) -> IF3(divides2(s1(s1(X)), Y), filter2(s1(s1(X)), Z), cons2(Y, filter2(X, sieve1(Y))))
SIEVE1(cons2(X, Y)) -> FILTER2(X, sieve1(Y))
FROM1(X) -> FROM1(s1(X))
The TRS R consists of the following rules:
primes -> sieve1(from1(s1(s1(0))))
from1(X) -> cons2(X, from1(s1(X)))
head1(cons2(X, Y)) -> X
tail1(cons2(X, Y)) -> Y
if3(true, X, Y) -> X
if3(false, X, Y) -> Y
filter2(s1(s1(X)), cons2(Y, Z)) -> if3(divides2(s1(s1(X)), Y), filter2(s1(s1(X)), Z), cons2(Y, filter2(X, sieve1(Y))))
sieve1(cons2(X, Y)) -> cons2(X, filter2(X, sieve1(Y)))
The set Q consists of the following terms:
primes
from1(x0)
head1(cons2(x0, x1))
tail1(cons2(x0, x1))
if3(true, x0, x1)
if3(false, x0, x1)
filter2(s1(s1(x0)), cons2(x1, x2))
sieve1(cons2(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 2 SCCs with 3 less nodes.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
FILTER2(s1(s1(X)), cons2(Y, Z)) -> SIEVE1(Y)
FILTER2(s1(s1(X)), cons2(Y, Z)) -> FILTER2(X, sieve1(Y))
FILTER2(s1(s1(X)), cons2(Y, Z)) -> FILTER2(s1(s1(X)), Z)
SIEVE1(cons2(X, Y)) -> SIEVE1(Y)
SIEVE1(cons2(X, Y)) -> FILTER2(X, sieve1(Y))
The TRS R consists of the following rules:
primes -> sieve1(from1(s1(s1(0))))
from1(X) -> cons2(X, from1(s1(X)))
head1(cons2(X, Y)) -> X
tail1(cons2(X, Y)) -> Y
if3(true, X, Y) -> X
if3(false, X, Y) -> Y
filter2(s1(s1(X)), cons2(Y, Z)) -> if3(divides2(s1(s1(X)), Y), filter2(s1(s1(X)), Z), cons2(Y, filter2(X, sieve1(Y))))
sieve1(cons2(X, Y)) -> cons2(X, filter2(X, sieve1(Y)))
The set Q consists of the following terms:
primes
from1(x0)
head1(cons2(x0, x1))
tail1(cons2(x0, x1))
if3(true, x0, x1)
if3(false, x0, x1)
filter2(s1(s1(x0)), cons2(x1, x2))
sieve1(cons2(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
FILTER2(s1(s1(X)), cons2(Y, Z)) -> SIEVE1(Y)
FILTER2(s1(s1(X)), cons2(Y, Z)) -> FILTER2(X, sieve1(Y))
FILTER2(s1(s1(X)), cons2(Y, Z)) -> FILTER2(s1(s1(X)), Z)
SIEVE1(cons2(X, Y)) -> SIEVE1(Y)
SIEVE1(cons2(X, Y)) -> FILTER2(X, sieve1(Y))
Used argument filtering: FILTER2(x1, x2) = x2
cons2(x1, x2) = cons2(x1, x2)
SIEVE1(x1) = x1
sieve1(x1) = x1
filter2(x1, x2) = filter
if3(x1, x2, x3) = if
Used ordering: Quasi Precedence:
cons_2 > [filter, if]
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
primes -> sieve1(from1(s1(s1(0))))
from1(X) -> cons2(X, from1(s1(X)))
head1(cons2(X, Y)) -> X
tail1(cons2(X, Y)) -> Y
if3(true, X, Y) -> X
if3(false, X, Y) -> Y
filter2(s1(s1(X)), cons2(Y, Z)) -> if3(divides2(s1(s1(X)), Y), filter2(s1(s1(X)), Z), cons2(Y, filter2(X, sieve1(Y))))
sieve1(cons2(X, Y)) -> cons2(X, filter2(X, sieve1(Y)))
The set Q consists of the following terms:
primes
from1(x0)
head1(cons2(x0, x1))
tail1(cons2(x0, x1))
if3(true, x0, x1)
if3(false, x0, x1)
filter2(s1(s1(x0)), cons2(x1, x2))
sieve1(cons2(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
FROM1(X) -> FROM1(s1(X))
The TRS R consists of the following rules:
primes -> sieve1(from1(s1(s1(0))))
from1(X) -> cons2(X, from1(s1(X)))
head1(cons2(X, Y)) -> X
tail1(cons2(X, Y)) -> Y
if3(true, X, Y) -> X
if3(false, X, Y) -> Y
filter2(s1(s1(X)), cons2(Y, Z)) -> if3(divides2(s1(s1(X)), Y), filter2(s1(s1(X)), Z), cons2(Y, filter2(X, sieve1(Y))))
sieve1(cons2(X, Y)) -> cons2(X, filter2(X, sieve1(Y)))
The set Q consists of the following terms:
primes
from1(x0)
head1(cons2(x0, x1))
tail1(cons2(x0, x1))
if3(true, x0, x1)
if3(false, x0, x1)
filter2(s1(s1(x0)), cons2(x1, x2))
sieve1(cons2(x0, x1))
We have to consider all minimal (P,Q,R)-chains.